Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination.

نویسندگان

  • Quanpeng Chen
  • Jinhua Li
  • Xuejin Li
  • Ke Huang
  • Baoxue Zhou
  • Wenfeng Shangguan
چکیده

A self-biasing photoelectrochemical (PEC) cell that could work for spontaneous overall water splitting in a neutral solution was established based on the mismatched Fermi levels between the photoelectrodes. A Pt-catalyst-decorated crystalline silicon photovoltaic cell (Pt/PVC) was prepared and employed as an effective photocathode. This was coupled with a poly(ethylene glycol)-directed WO3/W photoanode prepared by a hydrothermal process. Both of the photoelectrodes showed a response to visible light. The WO3/W photoanode had a positively located valence band edge, the energy level of which was enough for water oxidation, and the Pt/PVC photocathode possessed a negatively located conduction band edge, which was capable of water reduction. More importantly, the Fermi level of the WO3/W photoanode was more positive than that of the Pt/PVC photocathode because of the p-n junction of the PVC that decoupled the band bending and enlarged the photovoltage. Under visible-light irradiation, the WO3/W photoanode provided a negative bias for the Pt/PVC photocathode, and the Pt/PVC photocathode provided a positive bias for the WO3/W photoanode. An interior bias was generated that could relax the strict criteria of overall water splitting by cooperatively separating the hole-electron pairs at both photoelectrodes. In this system, the short-circuit current and the open-circuit voltage increased with increasing light intensity (AM 1.5 illumination) to reach 121 μA cm(-2) and 0.541 V, respectively, at a light intensity of 100 mW cm(-2). Such a combination provides a promising method for the fabrication of self-driven devices for solar-energy storage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correction for Swierk et al., Metal-free organic sensitizers for use in water-splitting dye-sensitized photoelectrochemical cells.

Solar fuel generation requires the efficient capture and conversion of visible light. In both natural and artificial systems, molecular sensitizers can be tuned to capture, convert, and transfer visible light energy. We demonstrate that a series of metal-free porphyrins can drive photoelectrochemical water splitting under broadband and red light (λ > 590 nm) illumination in a dye-sensitized TiO...

متن کامل

Solar-to-hydrogen efficiency exceeding 2.5% achieved for overall water splitting with an all earth-abundant dual-photoelectrode.

The solar-to-hydrogen (STH) efficiency of a traditional mono-photoelectrode photoelectrochemical water splitting system has long been limited as large external bias is required. Herein, overall water splitting with STH efficiency exceeding 2.5% was achieved using a self-biased photoelectrochemical-photovoltaic coupled system consisting of an all earth-abundant photoanode and a Si-solar-cell-bas...

متن کامل

An Inexpensive Co-Intercalated Layered Double Hydroxide Composite with Electron Donor-Acceptor Character for Photoelectrochemical Water Splitting

In this paper, the inexpensive 4,4-diaminostilbene-2,2-disulfonate (DAS) and 4,4-dinitro-stilbene-2,2- disulfonate (DNS) anions with arbitrary molar ratios were successfully co-intercalated into Zn2Al-layered double hydroxides (LDHs). The DAS(50%)-DNS/LDHs composite exhibited the broad UV-visible light absorption and fluorescence quenching, which was a direct indication of photo-induced electro...

متن کامل

Au@CdS Core–Shell Nanoparticles‐Modified ZnO Nanowires Photoanode for Efficient Photoelectrochemical Water Splitting

Hydrogen production from water splitting using solar energy based on photoelectrochemical (PEC) cells has attracted increasing attention because it leaves less of a carbon footprint and has economic superiority of solar and hydrogen energy. Oxide semiconductors such as ZnO possessing high stability against photocorrosion in hole scavenger systems have been widely used to build photoanodes of PE...

متن کامل

Reactive Sputtering of Bismuth Vanadate Photoanodes for Solar Water Splitting

Bismuth vanadate (BiVO4) has attracted increasing attention as a photoanode for photoelectrochemical (PEC) water splitting. It has a band gap in the visible light range (2.4−2.5 eV) and a valence band position suitable for driving water oxidation under illumination. While a number of methods have been used to make BiVO4 photoanodes, scalable thin film deposition has remained relatively underexp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ChemSusChem

دوره 6 7  شماره 

صفحات  -

تاریخ انتشار 2013